# Física III - Eletromagnetismo

## LISTA 10: Circuitos elétricos, Lei dos nós e das malhas de Kirchhoff.

<sup>3</sup> **Professor**: Massayuki Kondo, sala 102, Dept. Física, UFSC

#### 5 Problema 1

11

Na figura abaixo as fontes ideias possuem forças eletromotrizes  $\xi_1 = 12 \ V$  e  $\xi_2 = 6.0 \ V$  e os resistores

- 7 têm resistências  $R_1 = 4.0 \Omega$  e  $R_2 = 8.0 \Omega$ . Determine (a) a corrente no circuito; (b) a potência dissipada
- 8 no resistor 1; (c) a potência dissipada no resistor 2; (d) a potência fornecida pela fonte 1; (e) a potência
- 9 fornecida pela fonte 2; (f) A fonte 1 está fornecendo ou recebendo energia? (g) A fonte 2 está fornecendo
- o u recebendo energia?

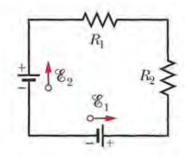



Figura 1: Circuito

Resposta:a) i = 0.5 A sentido anti-horário, b)  $P_1 = 1.0 W$ , c)  $P_2 = 2.0 W$ , d) 6.0 W, e) 2.0 W, f) fonte 1 fornece energia para o circuito, g) fonte 2 absorve energia do circuito.

#### 14 Problema 2

- Uma bateria de automóvel com uma força eletromotriz de 12.0 V tem uma carga inicial de 120  $A \cdot h$ .
- Supondo que a diferência de potencial entre os terminais permanece constante até a bateria se descarregar
- completamente, durante quantas horas a bateria é capaz de fornecer uma potência de 100 W?
- 18 **Resposta**: a)14.4 h

### 19 Problema 3

No circuito mostrado na figura abaixo, qual deve ser o valor de R para que a corrente no circuito seja 1.0~mA? Sabe-se que  $\xi_1=2.0~V$  e  $\xi_2=3.0~V$ ,  $r_1=r_2=3.0~\Omega$ . Qual a potência dissipada em R?

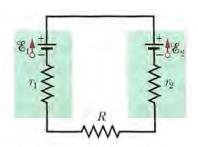



Figura 2: Circuito

**Resposta:**  $9.9 \times 10^{2} \Omega e 9.9 \times 10^{-4} W$ 

22

### 24 Problema 4

30

31

36

37

42

No circuito mostrado na figura abaixo, a fonte 1 tem uma força eletromotriz  $\xi_1=12.0~V$  e uma resistência interna  $r_1=0.016~\Omega$  e a fonte 2 tem uma força eletromotriz  $\xi_2=12.0~V$  e uma resistência interna  $r_1=0.012~\Omega$ . As fontes são ligadas em série com uma resistência externa R. a) Qual é o valor de R para o qual a diferença de potencial entre os terminais de uma das fontes é zero? b) com qual das duas fontes isso acontece?

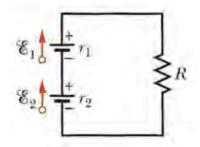



Figura 3: Circuito

**Resposta**:a)  $R = 0.0040 \Omega$ 

### Problema 5

Uma parte de um circuito é mostrado na figura abaixo, onde cinco resistores de  $5.0~\Omega$  estão ligados segundo o diagrama. a) Determine a resistência equivalente entre os pontos F e H; b) a resistência equivalente entre os pontos F e G.

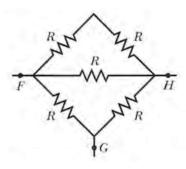



Figura 4: Circuito

**Resposta**:a)  $2.5 \Omega$ , b)  $3.13 \Omega$ 

#### 38 Problema 6

No diagrama mostrado na figura abaixo, temos  $R_1=100~\Omega,~R_2=50~\Omega$  e as fonte ideais têm forças eletromotrizes  $\xi_1=6.0~V,~\xi_2=5.0~V$  e  $\xi_3=4.0~V$ . Determine a) a corrente no resistor 1; b) a corrente no resistor 2; c) a diferença de potencial entre os pontos a e b.

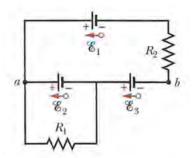



Figura 5: Circuito

**Resposta**: a) $i_1 = 0.050 \ A$ , b)  $i_2 = 0.060 \ A$ , c)  $V_{ab} = 9.0 \ V$ 

## 44 Problema 7

43

48

- No circuito abaixo, temos  $R_1=6.00~\Omega,~R_2=18.0~\Omega$  e a força eletromotriz da fonte ideal é  $\xi_12.0~V$ .
- Determine a) o valor absoluto e b) o sentido (para esqueda ou direita) da corrente  $i_1$ . c) Qual é a energia
- total dissipada nos quatro resistores em 1.0 min?

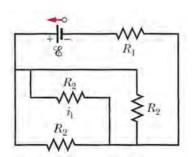



Figura 6: Circuito

Resposta: a) $i_1 = 1/3 A$ , b)para direita, c) 720 J

# 50 Problema 8

53

No circuito da figura 7, as fonte ideais têm forças eletromotrizes  $\xi_1 = 10.0 \ V$  e  $\xi_2 = 0.500 \xi_1$  e todas as resistências tem valor  $4.00 \ \Omega$ . a) Determine a corrente na resistência 2; b) na resistência 3.

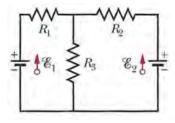



Figura 7: Circuito

**Resposta**: a) $i_2 = 0$ , b)  $i_3 = 1.25 A$ 

### 55 Problema 9

- No circuito da 7, considere que  $\xi_1 = 3.0 \ V$ ,  $\xi_2 = 1.00 \ V$ ,  $R_1 = 4.00 \ \Omega$ ,  $R_2 = 2.00 \ \Omega$ ,  $R_3 = 5.00 \ \Omega$  e
- as duas fontes são ideais. a) Determine a potência dissipada em  $R_1$ , b) em  $R_2$ ; c) em  $R_3$ ; d) Determine a
- potência da fonte 1, e) da fonte 2.
- **Resposta**: a) 0.709 W W; b) 0.0499 W; c) 0.346 W; d) 1.26 W; e) -0.158 W

### o Problema 10

63

- No circuito da figura 8, as forças eletromotrizes das fontes são ideais  $\xi_1 = 5.0 \ V$  e  $\xi_2 = 12.0 \ V$ , e as resis-
- tências são de  $2.0~\Omega$  e o potencial é zero no nó do circuito ligado ao terra. a) Determine os potenciais  $V_1$  e  $V_2$ .

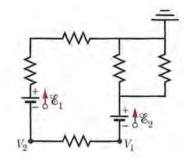



Figura 8: Circuito

**Resposta**:  $V_1 = -11 \ V \ e \ V_2 = -9.0 \ V$ 

### 65 Problema 11

69

70

76

No circuito da figura 9, a corrente na resistência 6 é conhecida e vale  $i_6=1.40~A$  e as resistências são  $R_1=R_2=R_3=2.00~\Omega,~R_4=1.0~\Omega,~R_5=8.00~\Omega$  e  $R_6=4.00~\Omega.$  Qual a força eletromotriz da fonte ideal?

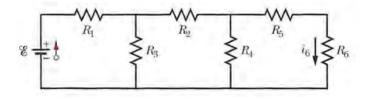



Figura 9: Circuito

**Resposta**:  $\xi = 48.3 V$ 

### 71 Problema 12

- No circuito da figura 10, as resistências são  $R_1=1.0~\Omega$  e  $R_2=2.0~\Omega$  e as forças eletromotrizes das fontes
- ideais são  $\xi_1 = 2.0 V$ ,  $\xi_2 = 4.0 V$  e  $\xi_3 = 4.0 V$ . a) Determine o valor absoluto e b) o sentido (para cima ou
- baixo) da corrente no fonte 1; c) o valor absoluto e d) o sentido da corrente na fonte 2; e) o valor absoluto e
- f) o sentido da corrente na fonte 3; g) a diferença de potencial  $V_{ab}=V_a-V_b$ .

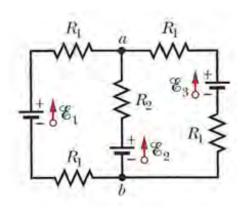



Figura 10: Circuito

Resposta: a)  $i_1=0.67~A$ , b) para baixo, c)  $i_2=0.33~A$ , d) para cima, e) $i_3=i_2=0.33~A$ , e) para cima, f)  $V_{ab}=3.3~V$ .

Observação: Com base nos conceitos discutidos em aula, aconselho que escolham mais alguns problemas dos livros citados nas referências bibliográficas.

# Referências

79

bibliografia: 1) Halliday/Resnick/Krane 9<sup>a</sup> edição. Observe atentamente os exercícios do capítulo correto, algumas versões do livro trazem os mesmos problemas em diferentes capítulos. 2) TIPLER, Volume 3,

85 Eletricidade e Magnetismo, Terceira edição. 3) SEARS/ZEMANSKY/YOUNG/FREEDMAN, Física III,

86 Eletromagnetismo,  $10^{\underline{a}}$ .